

High Voltage 3-Phase Motor Driver

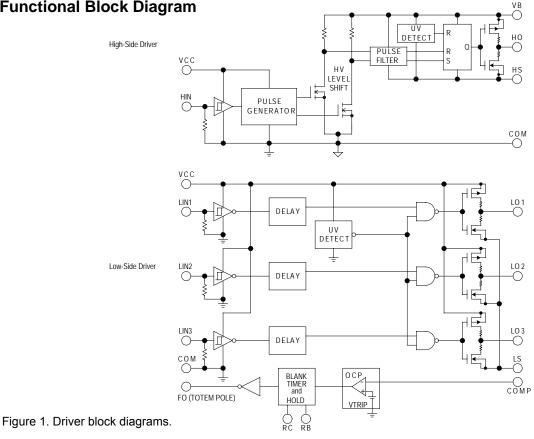
Features and Benefits

- Each half-bridge circuit consists of a pre-driver circuit that is completely independent from the others
- Protection against simultaneous high- and low-side turning on
- Bootstrap diodes with series resistors for suppressing inrush current are incorporated
- CMOS compatible input (3.3 to 5 V)
- Designed to minimize simultaneous current through both high- and low-side IGBTs by optimizing gate drive resistors
- UVLO protection with auto restart
- Overcurrent protection with off-time period adjustable by an external capacitor
- Fault (FO indicator) signal output at protection activation: UVLO (low side only), OCP, and STP
- Proprietary power DIP package

Package: Power DIP

Not to scale

Functional Block Diagram


Description

The SSM1004MA inverter power module (IPM) device provides a robust, highly-integrated solution for optimally controlling 3-phase motor power inverter systems and variable speed control systems used in energy-conserving designs to drive motors of residential and commercial appliances. These ICs take 85 to 253 VAC input voltage, and 25 A (continuous) output current. They can withstand voltages of up to 600 V (IGBT breakdown voltage).

The SSM1000M series employs a new proprietary DIP package. The IC itself consists of all of the necessary power elements (six IGBTs), pre-driver ICs (four), and flyback diodes (six), needed to configure the main circuit of an inverter, as well as a shunt resistor. This enables the main circuit of the inverter to be configured with fewer external components than traditional designs.

Applications include residential white goods (home applications) and commercial appliance motor control:

- Air conditioner compressor
- · Washing machine main drum

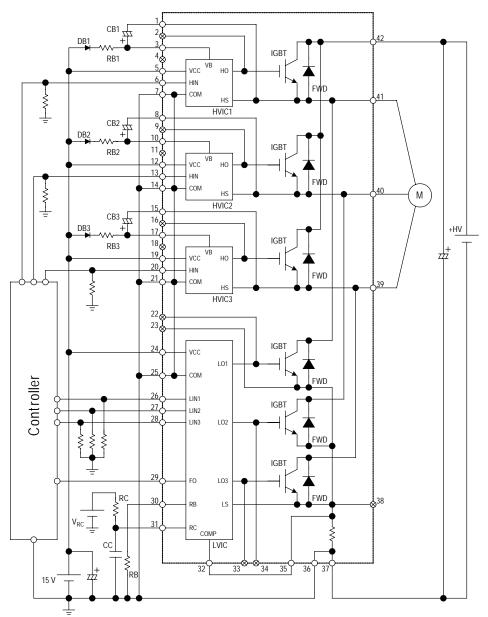
Selection Guide

Part Number	Packing	IGBT Breakdown Voltage, V _{CES} (min) (V)	IGBT Saturation	Output Current		
			Voltage, V _{CE(sat)} (typ) (V)	Continuous, I _O (max) (A)	Pulsed, I _{OP} (max) (A)	
SSM1004MA	8 pieces per tube	600	2.2	25	40	

Absolute Maximum Ratings, valid at T_A = 25°C

Characteristic	Symbol	Remarks	Rating	Unit
Main Supply Voltage	V _{BB}	Between VBB and GND	450	V
Logic Supply Voltage	V _{CC}	Between VCC and COM	20	V
Bootstrap Voltage	V _{BS}	Between VB and HS (U,V, and W phases)	20	V
Output Current, Continuous	Ι _ο	$T_{\rm C}$ = 25°C	25	A
Output Current, Pulsed	I _{OP}	PW ≤ 5 ms	40	A
Input Voltage	V _{IN}		-0.5 to 7	V
RC Pin Input Voltage V _{RC}		Between RC and COM	20	V
Allowable Power Dissipation P _D		T _C = 25°C, 1 element operating (IGBT)	45	W
Allowable Power Dissipation for Shunt Resistance	P _{DR}	$T_{\rm C} = 25^{\circ}{\rm C}$	6	w
	R _{θJC}	1 element operating (IGBT)	2.78	°C/W
Thermal Resistance (Junction to Case)		1 element operating (FWD)	3.98	°C/W
Case Operating Temperature	T _{COP}		-20 to 100	°C
Junction Temperature (IGBT)	TJ		150	°C
Storage Temperature	T _{stg}		-40 to 150	°C
Isolation Voltage V _{iso}		Between exposed thermal dissipation pad and each pin; for 1 minute, AC	1500	V _{RMS}

Recommended Operating Conditions

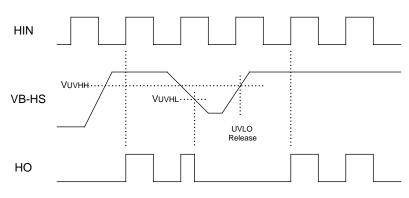

Characteristic	Symbol	Remarks	Min.	Тур.	Max.	Units
Main Supply Voltage	V _{BB}	Between VBB and LS	-	300	450	V
Logic Supply Voltage	V _{CC}	Between VCC and COM	13.5	_	16.5	V
Dead Time	t _{dead}		2.5	_	_	μs
Carrier Frequency	f _C		-	-	18	kHz
Junction Temperature	TJ		-	-	125	°C

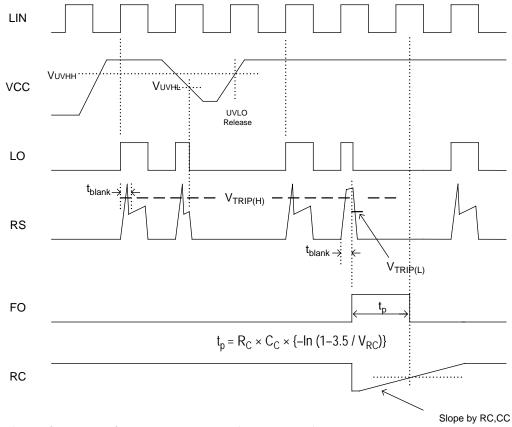
All performance characteristics given are typical values for circuit or system baseline design only and are at the nominal operating voltage and an ambient temperature, T_A , of 25°C, unless otherwise stated.

Typical Application Diagram

High Voltage 3-Phase Motor Driver

Characteristics	Symbol	Conditions	Min	Тур	Max	Units
Logic Supply Voltage	V _{cc}	Between VCC and COM	13.5	-	16.5	V
Logic Supply Current	I _{CC}	V _{CC} = 15 V	_	-	8	mA
	VIH	V _{CC} = 15 V, output on	4	-	_	V
Input Voltage	VIL	V _{CC} = 15 V, output off	_	-	1	V
Input Voltage Hysteresis	V _{lhys}	V _{CC} = 15 V	-	0.8	_	V
	I _{IHH}	High side, V_{CC} = 15 V, V_{IN} = 5 V	_	50	100	μA
Input Current	I _{ILH}	High side, V_{CC} = 15 V, V_{IN} = 0 V	-	-	2	μA
Input Current	I _{IHL}	Low side, V_{CC} = 15 V, V_{IN} = 5 V	_	50	100	μA
	IILL	Low side, V_{CC} = 15 V, V_{IN} = 0 V	_	-	2	μA
	V _{UVHL}	Llipp side $V = 15V$	9.5	-	11.5	V
Lindenveltage Leek Out	V _{UVHH}	High side, V _{CC} = 15 V	10.0	-	12.0	V
Undervoltage Lock Out	V _{UVLL}	Low side, V_{CC} = 15 V	10.0	-	12.0	V
	V _{UVLH}		10.5	-	12.5	V
EQ Torminal Quitaut Valtaga	V _{FOL}	V _{CC} = 15 V	0	-	1.0	V
FO Terminal Output Voltage	V _{FOH}	V _{CC} – 15 V	4.0	-	5.5	V
FO Terminal Output Current	I _{FOL}	V _{CC} = 15 V, V _{FOL} = 1 V	-	-	-1.6	mA
	I _{FOH}	V _{CC} = 15 V, V _{FOH} = 4 V	-	-	1	mA
Overcurrent Protection Trip Voltage	V _{TRIP}	V _{CC} = 15 V	0.45	0.50	0.55	V
Overcurrent Protection Hold Time	t _{p1}	V_{RC} = 15 V, R_{C} = 1 MΩ, C_{C} = 1000 pF, R_{B} = 30 kΩ	-	260	-	μs
	t _{p2}	V_{RC} = 5 V, R_{C} = 1.5 MΩ, C_{C} = 2200 pF, R_{B} = 30 kΩ	-	5	-	ms
Blanking Time	t _{blank}	V_{CC} = 15 V, R_B = 30 k Ω	-	1.6	-	μs
IGBT Breakdown Voltage	V _{CES}	V_{CC} = 15 V, I _C = 250 μ A, V_{IN} = 0 V	600	-	-	V
IGBT Leakage Current	I _{CES}	V_{CC} = 15 V, V_{CE} = 600 V, V_{IN} = 0 V	-	-	1	mA
IGBT Saturation Voltage	V _{CE(sat)}	V_{CC} = 15 V, I _C = 25 A, V _{IN} = 5 V	-	2.2	2.6	V
Diode Forward Voltage	VF	V_{CC} = 15 V, I _F = 25 A, V _{IN} = 0 V	-	2.0	2.4	V
Diode Recovery Time	t _{rr}	I _F = 25 A, di/dt = 100 A/μs	-	50	-	ns
	t _{dH(on)}		_	0.6	_	μs
Switching Time, High Side	t _{rH}		_	0.1	_	μs
Switching Time, High Side	t _{dH(off)}		_	0.5	_	μs
	t _{fH}	V_{BB} = 280 V, V_{CC} = 15 V, I_{C} = 25 A, 0 V \leq V _{IN} \leq 5 V,		0.07	_	μs
	t _{dL(on)}	inductive load	_	0.3	_	μs
Switching Time, Low Side	t _{rL}		_	0.2	_	μs
Switching Time, Low Side	t _{dL(off)}		_	0.4	_	μs
	t _{fL}		_	0.07	-	μs


ELECTRICAL CHARACTERISTICS, valid at T_A=25°C, unless otherwise noted

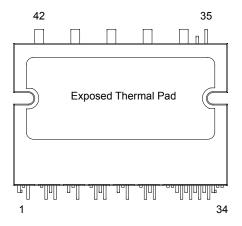

High Voltage 3-Phase Motor Driver

High Side Driver Input/Output Timing Diagrams

After UVLO is released, IC operation is started by the first rising edge of input

Low Side Driver Input/Output Timing Diagrams

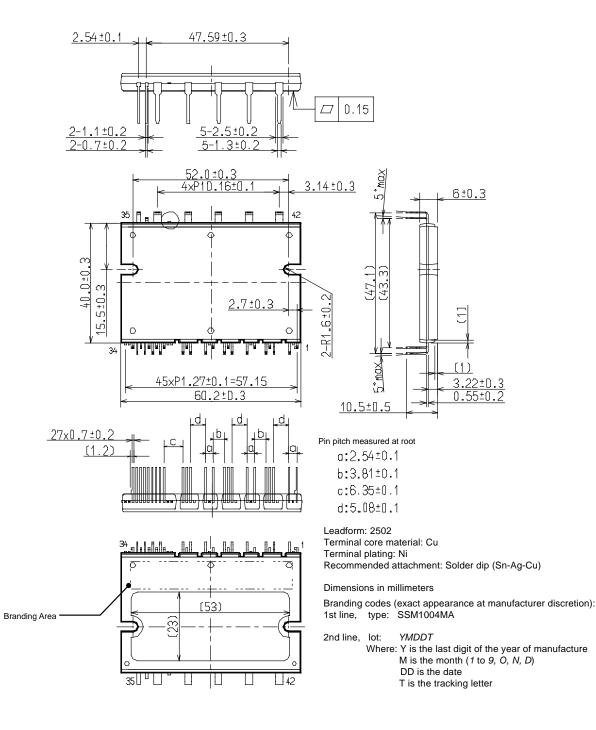
After UVLO is released, IC operation is started by the first rising edge of input


After RC charging and releasing, the OCP operation is started by the first rising edge of input

High Voltage 3-Phase Motor Driver

Pin-out Diagram

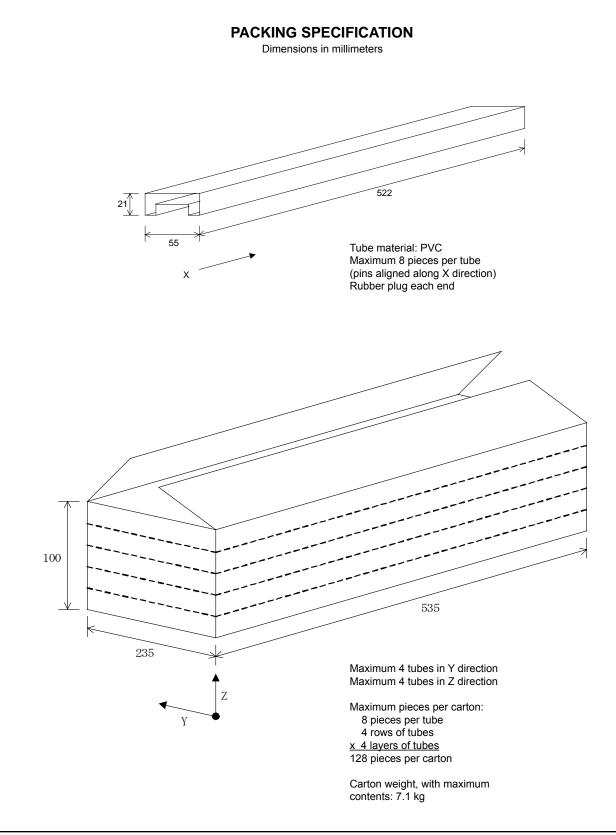
Terminal List Table


Number	Name	Function	Number	Name	Function
1	HS1	High-side floating supply ground (U phase)	22	NC	Low-side IGBT gate (U phase)
2	NC	High-side IGBT gate (U phase)	23	NC	Low-side IGBT emitter
3	VB1	High-side floating supply voltage (U phase)	24	VCC4	Low-side
4	NC	NC	25	COM4	Low-side GND
5	VCC1	Control circuit supply voltage (U phase)	26	LIN1	Signal input for low-side (U phase), active high
6	HIN1	Signal input for high-side (U phase), active high	27	LIN2	Signal input for low-side (V phase), active high
7	COM1	Logic supply ground (U phase)	28	LIN3	Signal input for low-side (W phase), active high
8	HS2	High-side floating supply ground (V phase)	29	FO	Fault output for overcurrent condition detected
9	NC	High-side IGBT gate (V phase)	30	RB	Blanking time setting resistor terminal
10	VB2	High-side floating supply voltage (V phase)	31	RC	Overcurrent protection setting resistor terminal
11	NC	NC	32	COMP	Feedback comparator terminal
12	VCC2	Control circuit supply voltage (V phase)	33	NC	Low-side IGBT gate (W phase)
13	HIN2	Signal input for high-side (V phase), active high	34	NC	Low-side IGBT gate (V phase)
14	COM2	Logic supply ground (V phase)	35	RSPOS	Shunt resistor terminal, positive phase
15	HS3	High-side floating supply ground (W phase)	36	RSNEG	Shunt resistor terminal, negative phase
16	NC	High-side IGBT gate (W phase)	37	GND	Main supply voltage GND
17	VB3	High-side floating supply voltage (W phase)	38	NC	Low-side IGBT emitter
18	NC	NC	39	W	Output for W phase
19	VCC3	Control circuit supply voltage (W phase)	40	V	Output for V phase
20	HIN3	Signal input for high-side (W phase), active high	41	U	Output for U phase
21	COM3	Logic supply ground (W phase)	42	VBB	Main DC bus supply voltage

High Voltage 3-Phase Motor Driver

PACKAGE OUTLINE DRAWING

Pb


Leadframe plating Pb-free. Device composition complies with the RoHS directive.

Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com

High Voltage 3-Phase Motor Driver

Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com

High Voltage 3-Phase Motor Driver

WARNING — These devices are designed to be operated at lethal voltages and energy levels. Circuit designs that embody these components must conform with applicable safety requirements. Precautions must be taken to prevent accidental contact with power-line potentials. Do not connect grounded test equipment.

The use of an isolation transformer is recommended during circuit development and breadboarding.

Because reliability can be affected adversely by improper storage environments and handling methods, please observe the following cautions.

Cautions for Storage

- Ensure that storage conditions comply with the standard temperature (5°C to 35°C) and the standard relative humidity (around 40 to 75%); avoid storage locations that experience extreme changes in temperature or humidity.
- Avoid locations where dust or harmful gases are present and avoid direct sunlight.
- Reinspect for rust on leads and solderability of products that have been stored for a long time.

Cautions for Testing and Handling

When tests are carried out during inspection testing and other standard test periods, protect the products from power surges from the testing device, shorts between adjacent products, and shorts to the heatsink.

Remarks About Using Silicone Grease with a Heatsink

- When silicone grease is used in mounting this product on a heatsink, it shall be applied evenly and thinly. If more silicone grease than required is applied, it may produce stress.
- Volatile-type silicone greases may permeate the product and produce cracks after long periods of time, resulting in reduced heat radiation effect, and possibly shortening the lifetime of the product.
- Our recommended silicone greases for heat radiation purposes, which will not cause any adverse effect on the product life, are indicated below:

Туре	Suppliers
G746	Shin-Etsu Chemical Co., Ltd.
YG6260	GE Toshiba Silicone Co., Ltd.
SC102	Dow Corning Toray Silicone Co., Ltd.

Heatsink Mounting Method

Torque When Tightening Mounting Screws. The recommended tightening torque for this product package type is: 78.4 to 88.2 N•cm (8.0 to 9.0 kgf•cm).

Soldering

• When soldering the products, please be sure to minimize the working time, within the following limits:

260±5°C 10 s

380±5°C 3 s

 Soldering iron should be at a distance of at least 1.5 mm from the body of the products

Electrostatic Discharge

- When handling the products, operator must be grounded. Grounded wrist straps worn should have at least 1 MΩ of resistance to ground to prevent shock hazard.
- Workbenches where the products are handled should be grounded and be provided with conductive table and floor mats.
- When using measuring equipment such as a curve tracer, the equipment should be grounded.
- When soldering the products, the head of soldering irons or the solder bath must be grounded in other to prevent leak voltages generated by them from being applied to the products.
- The products should always be stored and transported in our shipping containers or conductive containers, or be wrapped in aluminum foil.

The products described herein are manufactured in Japan by Sanken Electric Co., Ltd. for sale by Allegro MicroSystems, Inc.

Sanken and Allegro reserve the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Therefore, the user is cautioned to verify that the information in this publication is current before placing any order.

When using the products described herein, the applicability and suitability of such products for the intended purpose shall be reviewed at the users responsibility.

Although Sanken undertakes to enhance the quality and reliability of its products, the occurrence of failure and defect of semiconductor products at a certain rate is inevitable.

Users of Sanken products are requested to take, at their own risk, preventative measures including safety design of the equipment or systems against any possible injury, death, fires or damages to society due to device failure or malfunction.

Sanken products listed in this publication are designed and intended for use as components in general-purpose electronic equipment or apparatus (home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Their use in any application requiring radiation hardness assurance (e.g., aerospace equipment) is not supported.

When considering the use of Sanken products in applications where higher reliability is required (transportation equipment and its control systems or equipment, fire- or burglar-alarm systems, various safety devices, etc.), contact a company sales representative to discuss and obtain written confirmation of your specifications.

The use of Sanken products without the written consent of Sanken in applications where extremely high reliability is required (aerospace equipment, nuclear power-control stations, life-support systems, etc.) is strictly prohibited.

The information included herein is believed to be accurate and reliable. Application and operation examples described in this publication are given for reference only and Sanken and Allegro assume no responsibility for any infringement of industrial property rights, intellectual property rights, or any other rights of Sanken or Allegro or any third party that may result from its use.

Copyright © 2007 Allegro MicroSystems, Inc.

Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com

January, 2008

<Worldwide Contacts>

Asia Pacific

China

Sanken Electric Hong Kong Co., Ltd. Suite 1026 Ocean Centre, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: 852-2735-5262 Fax: 852-2735-5494

Sanken Electric (Shanghai) Co., Ltd. Room3202, Maxdo Centre, Xingyi Road 8, Changning district, Shanghai, China Tel: 86-21-5208-1177 Fax: 86-21-5208-1757

Taiwan Sanken Electric Co., Ltd. Room 1801, 18th Floor, 88 Jung Shiau East Road, Sec. 2, Taipei 100, Taiwan R.O.C. Tel: 886-2-2356-8161

Fax: 886-2-2356-8261

<u>India</u>

Saket Devices Pvt. Ltd. Office No.13, First Floor, Bandal - Dhankude Plaza, Near PMT Depot, Paud Road, Kothrud, Pune - 411 038, India Tel: 91-20-5621-2340 91-20-2528-5449 Fax: 91-20-2528-5459

<u>Japan</u>

Sanken Electric Co., Ltd. Overseas Sales Headquarters Metropolitan Plaza Bldg. 1-11-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-0021, Japan Tel: 81-3-3986-6164 Fax: 81-3-3986-8637

<u>Korea</u>

Sanken Electric Korea Co., Ltd. Mirae Asset Life Bldg. 6F, 168 Kongduk-dong, Mapo-ku, Seoul, 121-705, Korea Tel: 82-2-714-3700 Fax: 82-2-3272-2145

Singapore

Sanken Electric Singapore Pte. Ltd. 150 Beach Road, #14-03 The Gateway West, Singapore 189720 Tel: 65-6291-4755 Fax: 65-6297-1744

January, 2008

Europe

United Kingdom

Sanken Power Systems (UK) Limited Pencoed Technology Park Pencoed, Bridgend CF35 5HY. UK Tel: 44-1656-869-100 Fax: 44-1656-869-162

North America

United States

Allegro MicroSystems, Inc. 115 Northeast Cutoff, Worcester, Massachusetts 01606, U.S.A. Tel: 1-508-853-5000 Fax: 1-508-853-3353

Allegro MicroSystems, Inc. (Southern California)

14 Hughes Street, Suite B105, Irvine, CA 92618 Tel: 1-949-460-2003 Fax: 1-949-460-7837